POLARE ÄTHYLENE I † DIE SYNTHESE VON 4-NITROPYRIDAZINEN

Helmut Hamberger, Hellmuth Reinshagen, Gerhard Schulz und Gerhard Sigmund Sandoz Forschungsinstitut GmbH., A-1230 Wien, Brunnerstraße 59

(Received in Germany 11 July 1977; received in UK for publication 26 August 1977)

Das aus Schwefelkohlenstoff und Nitromethan auf einfache Weise zugängliche 1-Nitro-2,2-bismethylmercaptoäthylen $\underline{1}$ gewann innerhalb der vergangenen fünf Jahre als C-2 Baustein zur Synthese diverser Heterozyklen zunehmend an Bedeutung 1-7.

Die Reaktion von $\underline{1}$ mit einem Moläquivalent Hydrazin in siedendem Äthanol führt mit 80% der Theorie zum S-Methyläther des Nitrothiolessigsäurehydrazids $\underline{2}$.

Analog dazu erhält man aus den Nitroketenthioaminalen 3-5 die Nitroessigsäure-amidrazone 6-8 . - (Tabelle I) -

$$3 R = C_6 H_5 - 1,8$$

$$6 R = C_6 H_c - 6$$

$$\frac{4}{R} = c_6 H_5 - c_{12} - 5$$

$$\underline{7}$$
 R = $C_6H_5-CH_2-$

TA	BF	T.T	. F.	Т
LM	.00	خند	ظه	- 1

PROD.	AUSB.	SMP. °C	NMR	(CDC1 ₃ /DMSO)
2	60%	Öl	5.26	(s, 2, -cH ₂ NO ₂)
<u>6</u>	61%	155 - 57	6.28	(s, \rightarrow $\frac{NO_2}{H}$), 5.24, (s, -CH ₂ NO ₂)
7	67%	146-48	6.53	(S,br. $\rightarrow \qquad $
8	52%	102-05	6.70	(S,br. $\longrightarrow \mathbb{H}^{NO_2} \longrightarrow \mathbb{CH}_2^{NO_2}$)
1				

Diese zum Teil neuen Derivate der Nitroessigsäure bieten sich als hoch funktionalisierte vielseitig verwendbare Synthesebausteine 9 an.

Setzt man das Nitrothiolessigsäurehydrazid 2 bzw. die Amidrazone 6-8 unter Basenkatalyse mit wässrigem Glyoxal oder Methylglyoxal um, so gelangt man zu den 4-Nitropyridazinen 9-14. Dabei reagiert 2 mit Methylglyoxal in Gegenwart von Natriumkarbonat zu 10, Natriumbikarbonat hingegen führt unter sonst gleichen Bedingungen zum isomeren 5-Methylpyridazin 11.

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ R_1 & & \\ & &$$

m		DI	TT	TT
111	чь	5 H. I	$_{ m LE}$	1 1

PROD.	AUSB.	SMP. °C	UV (MeOH,λ/ε)	NMR (CDC1 ₃)
9ª	30%	117-20	214,(9370),284,(6550) 341,(1400)	8.15, 9.40, (D,1,J=6.0)
10 ^{a,d}	30%	92-94	216,(12300),282,(8280) 340,(1100)	7.98, (S, 1)
11 ^b ,d	31%	94-96	203,(12150),243,(10500) 344,(1130)	8.88, (S, 1)
12 ^c	50%	93 - 95	234,(11800),280,(8230) 430,(2770)	8.03, 8.97, (D,1,J=5.6)
13 ^a	40%	157 - 60	230,(19100),257,(5260) 414,(3840)	7.95, 8.85, (D,1,J=5.0)
14 ^a	52%	175-77	223,(15300),260,(4110) 425,(3840)	7.90, 8.70, (D,1,J=5.4)

Infrarot- und Massenspektren stehen im Einklang mit den zugeordneten Strukturen.

- a.) Nach Methode A dargestellt.
- b.) Nach Methode A dargestellt, jedoch unter Verwendung von ${\rm Na_2CO_3}$ anstelle von ${\rm Na_2CO_3}$.
- c.) Nach Methode B dargestellt.
- d.) C-13 NMR (CDCl₃)

Substanz 10

Substanz 11

Zuordnung	ઠ	Aufs	paltung	ઠ	Aufspaltung
-SCH ₃	11.9	Q	140 Hz	14.1	Q 143 Hz
-CH ₃	17.1	Q,d	128 u. 4 Hz	15.0	Q,d 131.5 u. 3 Hz
C-3	150.9	bzw.	157.0 m	155.0	m
C-4	164.4	s		146.8	
C-5	108.4	D,q	168 u. 4 Hz	128.6	d,q 7.5 u. 6.3 Hz
C-6	150.9	bzw.	157.0 m	151.6	D,q 187 u. 5.2 Hz

Für Pyridazin sind in der Literatur¹⁰ folgende chemische Verschiebungen und direkte Kopplungen angegeben: C-3 und C-6, 152.6, J=185 Hz., C-4 und C-5 127.7 J=167 Hz.

Sowohl die Lage wie auch die Aufspaltungen der wasserstofftragenden C-Atome des Heterozyklus beweisen die angenommenen Strukturen $\underline{10}$ und $\underline{11}$.

Umfang und Grenzen dieser neuen Ringschlußreaktion sowie die chemische Reaktivität der auf diese Weise erstmals zugänglich gewordenen Klasse der Nitropyridazine sind Gegenstand weiterer Untersuchungen.

EXPERIMENTE

- Methode A: Zu einer Lösung von 7.76 g (4.0 mMol) 30% igem wssr. Glyoxal in 100 ml Wasser und 4.20 g (4.0 mMol) Na₂CO₃ werden bei +8°C während 10 Min. 6.0 g (4.0 mMol) 2, in 20 ml Äthanol gelöst, zugetropft. Nach 45 Min. rühren bei 10°C nutscht man 2.0 g, d.s. 30% d.Th. analysenreines 9 ab.
- Methode B: Ein heterogenes Gemisch von 1.0 g (0.5 mMol) 6, 100 ml Benzol, 100 ml Wasser, 10 ml (5.0 mMol) 30% iges wssr. Glyoxal und 2 ml Benzyltriäthylammoniumhydroxid werden 18 Stdn. heftig gerührt. Die tiefrote Benzolphase extrahiert man anschließend noch 3x mit Wasser, trocknet mit Magnesiumsulfat und dampft im Vakuum ein. Man erhält 550 mg (49.5% d.Th.) analysenreines 12.

†Diese Reihe ist Prof. R.B. Woodward zum sechzigsten Geburtstag gewidmet.

- 1. R.Gompper und H.Schäfer, Chem.Ber., 100, 591, 1967.
- 2. H.Schäfer, B.Bartho und K.Gewald, Z.Chem., 1973, 294.
- 3. H.Schäfer und K.Gewald, Z.Chem., 1975, 100.
- 4. A.Kumar, H.Ila und H.Junjappa, J.Chem.Soc., Chem.Comm., 1976, 15.
- 5. M.Sone, Y.Tominaga, Y.Matsuda, G.Kobayashi, Yakugaku Zasshi, 1977, 262.
- 6. H.Schäfer und K.Gewald, J.pr.Chem., 319, 149, 1977.
- 7. S.Rajappa, B.G.Advani, R.Sreenivasan, Tetrahedron, 33, 1057, 1977.
- 8. Diese Substanz wurde von R.Gompper erstmals aus Nitromethan und Phenylsenföl dargestellt¹. Man erhält <u>3</u> auch durch Kochen von <u>1</u> mit einem Moläquivalent Anilin in Äthanol. Von den dabei a priori zu erwartenden Diastereomeren isoliert man ausschließlich eine Form. Wie aus der Lage des N-H Protons bei 11.65 ppm sowie aus dem Overhauser Effekt von 22½+3 zwischen dem olefinischen Proton und der SCH₃-Gruppe geschlossen werden kann, handelt es sich dabei um die E-Form, die durch die starke N-H-Brücke zur Nitrogruppe begünstigt ist. Die tiefliegende Rotationsbarriere der C=C Bindung derartig polarisierter Olefine, -(für das 1-Nitro-2,2-bisbenzylaminoäthylen beträgt aufgrund unserer NMR-Daten bei RT die Z-E-Isomerisierungskonstante 62 sec⁻¹, was einem Δ G* von 14000 cal. entspricht) schließen eine Isolierung der Z-Form von Nitroketenthioaminalen des Typs 3-5 aus.
- 9. Über die Umsetzung von $\underline{2}$ mit Carbonsäureanhydriden wird gesondert berichtet. 10.J.B. Stothers, Carbon-13-NMR Spectroscopy, AP 72.

Frau O.Hoffmann sowie den Herren E.Tomantschger, G.Krumpschmid und F.Müller danken wir für die ausgezeichnete experimentelle Mitarbeit.